Load Flow Analysis Using Particle Swarm Optimization Trained Neural Network

نویسنده

  • M. Ulagammai
چکیده

A new method of load flow analysis of a power system using Particle Swarm Optimization (PSO) trained neural network is proposed in this paper. Load Flow Analysis is the first and foremost step in power system analysis. It is necessary to solve load flow problem for Power System Planning, Contingency analysis, and Stability analysis. The results obtained from the load flow analysis are Voltage magnitudes and phase angles at various buses and line losses. Newton-Raphson (NR) method is mostly used for solving the load flow problem. This conventional method involves the formation of Jacobian matrix, which increases the complexity of the solution algorithm, and also it fails to solve the problem for ill conditioned systems where line reactance to resistance ratio is small. The proposed method using PSO trained neural network reduces the mathematical computations. Trained neural network is used for solving the load flow problem. The generalized back propagation algorithm for training the neural network is replaced by an optimization technique. The weighing factors in the weighing nodes of the neural network constructed are tuned using PSO. With the advantage of global search abilities of PSO, the network constructed results in the better training. The above-proposed method is tested on standard 5 bus system. The results are compatible with the results obtained by conventional NR method. Nomenclature: nnumber of buses ViVoltage magnitude at bus i δi – Voltage angle at bus i in radians Yij – Magnitude of ij th element of bus admittance matrix θij – Angle of ij th element of bus admittance matrix Pgi – Real power generation at bus i Qgi Reactive power generation at bus i PdiReal power demand at bus i Qdi Reactive power demand at bus i

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optimal Rotor Fault Detection in Induction Motor Using Particle-Swarm Optimization Optimized Neural Network

This study examined and presents an effective method for detection of failure of conductor bars in the winding of rotor of induction motor in low load conditions using neural networks of radial-base functions. The proposed method used Hilbert method to obtain the stator current signal push. The frequency and signal amplitude of the push stator were used as the input of the neural network and th...

متن کامل

Particle Swarm Optimization- Artificial Neural Network For Power System Load Flow

Load flow study is done to determine the power system static states (voltage magnitudes and voltage angles) at each bus to find the steady state working condition of a power system. It is important and most frequently carried out study performed by power utilities for power system planning, optimization, operation and control. In this paper a Particle Swarm Optimization Neural Network (PSO-ANN)...

متن کامل

Evolutionary Techniques Based Combined Artificial Neural Networks for Peak Load Forecasting

This paper presents a new approach using Combined Artificial Neural Network (CANN) module for daily peak load forecasting. Five different computational techniques –Constrained method, Unconstrained method, Evolutionary Programming (EP), Particle Swarm Optimization (PSO), and Genetic Algorithm (GA) – have been used to identify the CANN module for peak load forecasting. In this paper, a set of ne...

متن کامل

Optimization of ICDs' Port Sizes in Smart Wells Using Particle Swarm Optimization (PSO) Algorithm through Neural Network Modeling

Oil production optimization is one of the main targets of reservoir management. Smart well technology gives the ability of real time oil production optimization. Although this technology has many advantages; optimum adjustment or sizing of corresponding valves is still an issue to be solved. In this research, optimum port sizing of inflow control devices (ICDs) which are passive control valves ...

متن کامل

Traffic Signal Prediction Using Elman Neural Network and Particle Swarm Optimization

Prediction of traffic is very crucial for its management. Because of human involvement in the generation of this phenomenon, traffic signal is normally accompanied by noise and high levels of non-stationarity. Therefore, traffic signal prediction as one of the important subjects of study has attracted researchers’ interests. In this study, a combinatorial approach is proposed for traffic signal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015